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Reporting Period: 1 May, 2007 to 30 April, 2010 (with a no-cost extension to 30 October, 2010)
Executive Summary

The ability to generate explanations plays a central role in human cognition and is
essential for intelligent problem solving and decision making. Generating explanations requires a
deep understanding of the domain and tremendous flexibility in the way concepts are accessed,
combined and used. Together, the joint requirements of deep understanding and flexibility in
conceptual access and use constitute challenging design requirements for a model of explanation.

The PlIs developed a systematic program of computational modeling to elucidate the
mental representations and processes underlying the generation of explanations in the service of
problem solving and decision making. The guiding insight underlying this effort was that the
process of explanation-generation shares many of the same computational requirements as the
process of analogy-making. In particular, both depend on the flexible use of rich systems of
relational knowledge. Accordingly, the PIs’ starting point for this modeling effort was Hummel
and Holyoak’s (1997, 2003) LISA model of analogy, analogical inference and schema induction.

Explanation differs from analogy in several important respects, however, requiring the
PIs to expand the LISA model in a number of important directions. First, whereas analogy-
making is an extremely content-general cognitive process (in the sense that people can make
analogies about virtually anything, with no particular set of relations or content knowledge being
privileged over others), causal relations play a privileged role in explanation. Explanations can
incorporate all kinds of relational knowledge (e.g., invoking relations between fuel lines and fuel
injectors in an explanation for why a car won’t start) but all these relations are tied together into
explanations by higher-order causal relations (e.g., the fuel line causes the fuel to flow to the fuel
injector). Moreover, these causal relations seem cognitively privileged over other relations in the
sense that they guide the explanation process, structure the resulting explanations and seem to do
so in a way that 1s more implicit (i.e., less taxing of working memory resources) than the explicit,
lower-level relations they structure.

Accordingly, the PIs developed a novel approach to representing causal relations in the
LISA model. LISA is an artificial neural network that represents propositional knowledge (e.g.,
mixes (fuel-injector, fuel, oxygen)) in a hierarchy of neuron-like units. At the bottom of the
hierarchy, semantic units represent the semantic features of objects (such as fuel-injector, fuel
and oxygen) and relational roles (such as the roles of the mixes relation). Together, the semantic
units represent objects and relational roles in a distributed fashion, explicitly capturing what
different objects and roles have in common and how they differ. Above the distributed semantic
units, localist object and role units represent objects and relational roles in a local fashion,
sharing bi-directional excitatory connections with the corresponding semantic units. Localist
role-binding units (also called sub-proposition, or SP, units) represent bindings of objects (or
whole propositions) to relational roles. For example, to represent mixes (fuel-injector, fuel,
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oxygen), one SP would represent the binding of the first role of mixes to fuel-injector, a second
would bind the second role to fuel and a third the third role to oxygen. These units share bi-
directional excitatory connections with the object (or proposition) and role units to which they
refer. Finally, at the top of the representational hierarchy in LISA, proposition, or P, units bind
sub-propositions into full propositions by sharing excitatory connections with the corresponding
SP units. When a proposition enters working memory (i.e., when it becomes active) the SPs
representing its various role bindings fire out of synchrony with one another, causing the
representations of its constituent roles to fire in synchrony with their arguments and our of
synchrony with one another (e.g., the first role of mixes would fire in synchrony with fuel-
injector and out of synchrony with the second and third roles and their arguments).

This approach to knowledge representation is capable of representing causal relations as
explicit relations (i.e., with the first role of causes firing in synchrony with the cause, the second
role firing in synchrony with the effect and the two roles firing out of synchrony with one
another). However, Hummel and Holyoak (1997, 2003) showed that LISA’s approach to
knowledge representation provides an excellent account of the limitations of working memory
(WM). As such, representing causal relations in this way would consume WM resources.
(Although they agree that causal relations can be represented and reasoned about in this way, the
PIs also believe that for the purposes of explanation-generation, causal rclations can also be
represented in a less WM-consuming fashion.) Accordingly, the Pls proposed a fourth kind of
unit for LISA, the group unit. Group units “sit above” P (proposition) units n the representational
hierarchy and share excitatory connections with the proposition(s) they group. The Pls used
group units to represent propositions that collectively form a cause and those that form an effect.
Finally, cause and effect groups are connccted by higher-level group units that link causes to
their effects. This approach allows LISA to represent causal relations explicitly but without
incurring any additional load on WM. They also allow causal relations to form a natural basis for
organizing knowledge in long-term memory (LTM) and for controlling both retrieval from LTM
and the flow of control in reasoning and explanation-generation more generally (Hummel,
Devnich & Landy, 2008, Hummel & Landy, 2009).

In addition to the privileged role of causal relations, another important way in which
explanation differs from analogy is that it often draws on multiple sources of knowledge from
LTM. Analogy, by contrast, is typically conceived of as drawing on only a single source from
LTM. This difference is extremely important as it speaks to one of the fundamental constraints
that is broadly agreed to make the process of analogy-making possible in the first place: The one-
to-one mapping constraint. As universally conceived in the analogy literature, analogy is the
process of using a familiar source situation to reason about a novel target situation. The classic
example is the analogy between the structure of the solar system and the Rutherford mode of the
atom. In this analogy, the nucleus of the atom corresponds to the sun and the electrons to the
planets. Like the planets, the electrons “orbit™ the nucleus. (Although this model is now known
to be incorrect, it was nonetheless at one time useful.) Armed with this analogy, and with the
knowledge that a force (namely, gravity) causes the planets to orbit the sun, one can make the
analogical inference that some force must cause the electrons to orbit the nucleus. This
analogical inference depends critically on the mapping of the nucleus to the sun, the electrons to
the planets and “orbiting” (in the case of the electrons) to orbiting in the case of the planets: The
process of finding this mapping (i.e., the set of relational correspondences between elements of
the two situations) is the very heart and soul of analogy-making. And it is universally agreed in
the analogy literature that analogical mapping honors a one-to-one mapping constraint: Each




object and relational role in one situation may correspond to at most one object or relational role
in the other (e.g., if the electrons correspond to the planets then they cannot also correspond to
the sun). Without this constraint, analogical mapping would be hopelessly ill-posed.

Explanation-generation, by contrast, typically calls on multiple sources of knowledge.
Consider a simple example from Patalano, Chin-Parker and Ross (2006). These researchers gave
subjects a problem of the form, “In the population as a whole, people tend to prefer Pepsi to
Coke about as often as they prefer Coke to Pepsi. However, it turns out that ministers tend to
prefer Pepsi over Coke,” and asked them to generate an explanation for this “fact”. Their
subjects had no difficulty doing so, and all their explanations drew on multiple sources of
knowledge, including knowledge about ministers, Coke and Pepsi both as products and
corporations, and about things such as peoples’ generic product preferences. For example, one
common explanation took the form, “Well, Coke used to contain cocaine, and cocaine is illegal,
so maybe ministers object to the Coke corporation on moral grounds.” Note that this explanation
integrates knowledge of ministers, the history of the Coke corporation, the legal status of cocaine
and the kinds of things that might lead an individual to prefer one company’s product over
another’s. Integrating multiple sources of knowledge presents many complexities for a model of
explanation-generation, not least of which is that it requires the reasoner/model to violate the
one-to-one mapping constraint: In the context of a “minister” schema (i.e., one’s generic
knowledge about what ministers are typically like) the minister in the stated problem
corresponds (i.e., maps) to the minister in the schema; but in a “product preference” schema, that
same minister corresponds to “generic-product-preferring-person”.

Generalizing LISA’s algorithm for analogy-making to the problem of explanation-
generation thus required the Pls to find a way to violate the one-to-one mapping constraint
without rendering the analogical mapping problem fundamentally ill-posed. They did so by
implementing a procedure, controlled by the very group units that represent causal relations, that
iteratively retrieves relevant knowledge from LTM, maps that knowledge onto the explanandum
(i.e., that which is to be explained), uses it to make inferences about the explanandum, then
“forgets” the mappings that drove those inferences and repeats the retrieve-map-infer cycle. The
resulting algorithm provides a good qualitative account of the kinds of explanations subjects
generate in the laboratory (including those observed by Patalano et al., 2006; see Hummel et al.,
2008; Hummel & Landy, 2009).

In addition to the LISA-based process model of explanation, the PIs also developed a
computational-theory level model of explanation, ERIC (Explanatory Reasoning for Inductive
Confidence), that combines Bayesian reasoning with analogy to generate explanations in the
service of updating its inductive confidence in its beliefs. The resulting model, which the PIs are
still developing, does an excellent job accounting for a large body of effects in the literature on
inductive confidence (Landy & Hummel, 2009, 2010). The PIs have also completed numerous
empirical projects related to explanation and related problems, such as relational reasoning and
concept acquisition. At least 17 papers, chapters and conference proceedings, as well as
numerous presentations at scientific meetings, have been credited to the grant. The researchers
supported by this grant included John Hummel (PI), Brian Ross (Co-PI), David Landy (post-
doc), Erin Jones, Wookyoung Jung, Eric Taylor (graduate students), Pamela Glosson and Robert
Weisshappel (undergraduate research assistants).
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